Case 1:17-cv-00064-SLR Document 1-3 Filed 01/23/17 Page 1 of 33 PagelD #: 60

EXHIBIT C

Case 1:17-cv-00064-SLR Document 1-3 Filed 01/23/17 Page 2 of 33 PagelD #: 61

U.S. Patent No. 7,633,506

VIZI0O / Sigma Designs Products

Case 1:17-cv-00064-SLR Daginght L 7/6H8%04/ ¢34 1Page 3 of 33 PagelD #: 62

"1. A graphics chip comprising:"

1. A graphics chip comprising:

The VIZIO television model number E43U-D2 (the “VI1ZIO Product”) includes a graphics chip.

"4 EDITORS’
< 'CHOICE

SMARTCAST"

& trademari of Beviesed com Used under brerese

See https://www.vizio.com/e43d2.html.

The VIZIO Product includes a VIZIO V6 integrated circuit (the “V6 Integrated Circuit”).

Case 1:17-cv-00064-SLR Dacwheht & 7618508/ ¢34k A 1Page 4 of 33 PagelD #: 63
"1. A graphics chip comprising:"

UlZIO TVs / Displays Sound Bars / Audio Discover Support Shop
VIZIO Store / E43-D2
Qverview Tech Specs Support / Manuals

Key Specs

Class Size 43"

Screen Size (Diag.) 43"

Smart Platform VIZIO SmartCast™ w/ Google Cast™ Built-in

Resolution 1080p - 1920x1080

Display Processor V6 Six-Core Processor

Backlight Type Full-Array LED

Local Dimming YYes with Active LED Zones® x5

Clear Action™ 240

Built-in Wi-Fi Yes

See https://www.vizio.com/e43d2.html.

The V6 Integrated Circuit is powered by a dual core central processing unit and a quad core graphics
processing unit.

BE Extra spoke with Carlos
Angulo, the senior manager for
product marketing at Vizio, about
the technology behind these
consumer TVs and the impact of
4K/Ultra HD.

BE: Vizio became the first major
brand-name to break the $1,000
barrier for a 50-inch 4K TV. Why
4K? Isn't HD good enough? Will
4K be the next 3D, or does 4K
have legs?

Quad-Core GPU

Y Dual-Core CPU

Case 1:17-cv-00064-SLR Dagwheht L 7518508/ ¢34lh 1Page 5 of 33 PagelD #: 64
"1. A graphics chip comprising:"

See BE Extra, Interview with Carlos Angulo, Senior Manager for Product Marketing at VI1Z10, October 9,
2014, http://www.tvtechnology.com/news/0110/ktvs-a-conversation-with-vizios-carlos-angulo/272783.

BE: What are a couple of the technical obstacles to producing a reasonably priced 4K
display?

Angulo: To support the excellent picture quality and Ultra HD experience in our new P-
series Ultra HD collection, Vizio engineered a V6 six-core processor. Comprised of a
quad-core GPU plus dual-core CPU, the V6 six-core processor delivers maximum speed
and advanced graphics processing, enabling an even faster smart TV user experience. To
ensure picture quality always remains king, we used the VM50, a dedicated motion and
picture-processing engine, to render every image, including Ultra HD content, with
incredible detail. P-Series Ultra HD Smart TVs also support the latest standard in
streaming thanks to our Internet Apps Plus web interface.

See BE Extra, Interview with Carlos Angulo, Senior Manager for Product Marketing at VIZ10, October 9,
2014, http://www.tvtechnology.com/news/0110/ktvs-a-conversation-with-vizios-carlos-angulo/272783.

The V6 Integrated Circuit is made by Sigma Designs.

Case 1:17-cv-00064-SLR

Dagwneht ks 7/618L04/¢34h 1 Page 6 of 33 PagelD #: 65
"1. A graphics chip comprising:"

VIZIO iWssiies
TH r

Part No./ N S Tkiid o ke =t DOLBY,
10236041245 DIGITALPLUS

Serial No. / Ne de serie / Numéro de série

c
s This device cor
LISTI
i/ FCC 1D: PP

Energy Verified IC. 4491A-W\
E“l Rendement
i i e
Energétique Vérifié

FACTORY ID. J2
MADE IN CHINA/ HECHO EN C

Case 1:17-cv-00064-SLR Daginght & 7/6H8%04/¢34ih 1Page 7 of 33 PagelD #: 66

"1. A graphics chip comprising:"
]

Case 1:17-cv-00064-SLR Dagnght L 7/6He%04/ ¢34 1Page 8 of 33 PagelD #: 67

"1, A graphlcs chlp comprising:"

222
"::

sann

i
-=-¢

2 :nlll‘

TEOYH R« .
ZEOPH D

PN
_Tq

=

2§€3nnm¢nmg:§3

sn 91yl Ivm
f}SlQl

N8
S
=%
=
=y
o
'S
Yy
<t
N

- TP#413

7 181/
uwazmsso‘—d“

ln1633 R1631
I

See VIZI0O E43U-D2 Product Teardown.

Sigma Designs uses the “ARM][] Mali[]-400 MP GPU for their leading range of multimedia SoCs.” Itis
therefore believed that the V6 Integrated Circuit includes an ARM Mali 400 MP4 graphics processing unit (the
“Mali GPU”).

Case 1:17-cv-00064-SLR Dagnght L 7/6H8%04/ ¢34 1Page 9 of 33 PagelD #: 68
"1. A graphics chip comprising:"

Sigma Designs Enhances User Experience in the Digital Home

MILPITAS, CA-(Marketwired - Jan 9, 2014) - Sigma Designs® (NASDAQ: SIGM), a world leader in connected media platforms and the
builder of essential consumer semiconductor technologies, recently announced that they have licensed the popular ARM®E Mali™-400
MP for their leading range of multimedia SoCs,

The ARM Mali-400 MP is a complete 2D and 3D graphics acceleration platform which provides performance scalable up to 1080p
resolution and unrivalled power and bandwidth efficiency. With this license, Sigma Designs will enhance the user experience of the
digital home by enabling products with advanced and interactive user interfaces and casual gaming functionality.

The reach of the digital home continues to grow with a wide portfolio of connected Digital TVs, DMAs and hybrid Set Top Boxes now
available. Consumers are now able to have a richer viewing experience with interactive broadcasts, ‘over the top’ content and rich
HTMLS applications. By licensing the ARM Mali-400 MP, Sigma Designs are able to offer the performance level demanded by customers
for the advanced GUIs on these devices, as well as the reduced silicon area that is required in cost-sensitive markets. In addition, by
pairing the ARM Mali-400 MP with the ARM Cortex®-A9 CPU, Sigma Designs’ SoCs will have access to the vibrant Android™
Ecosystem that is optimizing applications for ARM’s CPU and GPU technologies.

“The inclusion of ARM technologies in our products will give Sigma Designs an exciting opportunity for enabling new functionality,” says
Mustafa Ozgen, vice-president and general manager of Sigma Designs’ Home Multimedia business unit. “Sigma Designs’ SoCs will offer
superior computing and graphics performance in addition to their already acclaimed superior multimedia performance and the ability to
scale from entry-level set-top boxes to higsh-end digital TWs.”

"By licensing the ARM Mali-400 MP, Sigma Designs can help consumers and their families discover stunning visual displays and fresh
digital experiences at home, from highly-accessible gaming to easy-to-use yet advanced and intuitive new interfaces,” said Trina Watt,
Vice President, Solutions Marketing, ARM. "ARM is delighted to help Sigma Designs bring the magic of ARM Mali graphics and ARM
Cortex processor technologies to many more of the world's households”

See http://malideveloper.arm.com/news/sigma-designs-enhances-user-experience-in-the-digital-home/.

Case 1:17-cv-00064-SLR RpsupestitNg. 7oles 59E23(difm £age 10 of 33 PagelD #: 69

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

a front-end in the graphics chip configured
to receive one or more graphics
instructions and to output a geometry;

The VIZI0O Product includes a front-end in the graphics chip configured to receive one or more graphics
instructions and to output geometry.

For example, the Mali GPU includes a Geometry Processor (the “Geometry Processor”).

Mali 400-MP Top Level Architecture

Asynch

Mali-400 MP Top-Level

APB
g ! ! !)
| |
Geometry Pixel Processor Pixel Processor ' : Pixel Processor ' Pixel Processor '
Processor # iy #3 | |
| i s
i S i A
r 3 r 3 r 3 r 3 r 3
Y Y Y Y Y
CLKs
MaliMMUs ‘
RESETs
r 3
IRQs
M Y
IDLEs
+— MaliL2

r

wAXI

= Scalable pixel performance
= 1-4 rasterizer cores
= 32K-128K L2 cache

>
-‘n “'l Bringing Visual Entertainment to Life

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at

ARM

http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_ Hot3D_ARM.pdf, at

p.8.

The Geometry Processor includes a Vertex Loader, Vertex Shader, Vertex Storer, and Polygon List Builder

Unit.

Case 1:17-cv-00064-SLR RpeupesiiINg. f@@ﬂ%?@f&iﬁ] {Page 11 of 33 PagelD #: 70

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

Mali-400 MP Geometry Processor

System bus interface

Vertex P
Vertex Storer Pol_ygon L'.St
Shader Builder Unit

Control Registers / Performance Counters

= Vertex Shader
= Single-threaded, deeply pipelined

o]
_.moll Bringing Visual Entertainment to Life

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010 Hot3D_ARM.pdf, at
p.10.

The Mali GPU includes a front-end configured to receive one or more graphics instructions. For example,
“Mali GPUs use data structures and hardware functional blocks[.]” Moreover, “shaders specify the vertex and
fragment processing operations.”

10

Case 1:17-cv-00064-SLR RpeupesiiINg. fél@g{%?@@% {Page 12 of 33 PagelD #: 71

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

1.61 About the OpenGL ES 3.x pipeline

Mal GPUs use data structures and hardware functional blocks to implement the OpenGL ES graphics
pipeline.

In the OpenGL ES 3.x pipeline, the shaders specify the vertex and fragment processing operations. The
application must provide a pair of shaders for each draw call. A vertex shader defines the vertex
processing operations and a fragment shader defines the fragment processing operations. The vertex
shader 15 executed once per vertex, and the fragment shader 1s executed once per fragment.

Most of the semantics that are associated with data flowing through the pipeline are abstracted into the

following special vanables that are declared in the shaders:

* Generie vertex attributes. Generie vertex attributes replace all vertex data, such as position, normal
vector, texture coordinates, and colors.

= Varying vanables. All outputs from the vertex shader, except for position and point size, are
abstracted into varying variables. These vaniables are interpolated across the primitive and are
available to the fragment shader.

* Uniform variables. All global states that are required by vertex and fragment processing, such as
transformation matrices, light positions, material properties, texture stage constants, and texture
bindings, are abstracted into uniform variables. The application sets the values of these vanables.

The following figure shows a simphified OpenGL ES graphics pipeline:

See http://malideveloper.arm.com/downloads/OpenGLES3.x/arm_mali_gpu_opengl_es_3-
x_developer_guide_en.pdf.

11

Case 1:17-cv-00064-SLR RpeupesiiINg. f@@g{%?@{&% {Page 13 of 33 PagelD #: 72

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

Transform
Feedback

Primitive
Assembly

Fragment Per-fragment
Shader operations

Figure 6-2 OpenGL ES 3.0 Programmable Pipeline

Primitives
In the primitives stage the pipeline operates on the geometric primitives described by vertices,
points, lines and polygons.

Vertex Shader
The vertex shader implements a general-purpose programmable method for operating on
vertices. The vertex shader transforms and lights vertices.

12

Case 1:17-cv-00064-SLR RpeupesiiINg. fé'@ﬂ%?@@iﬁ {Page 14 of 33 PagelD #: 73

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

6 Advanced Graphics Technigues
6.1 Custom shaders

Primitive assembly
In primitive assembly the vertices are assembled into geometric primitives. The resulting
primitives are clipped to a clipping volume and sent to the rasterizer.

Rasterization
Output values from the vertex shader are calculated for every generated fragment. This process
is known as interpolation. During rasterization, the primitives are converted into a set of two-
dimensional fragments that are then sent to the fragment shader.

Transform feedback
Transform feedback, enables writing selective writing to an output buffer that the vertex shader
outputs and is later sent back to the vertex shader. This feature is not exposed by Unity but it is
used internally, for example, to optimize the skinning of characters.

Fragment shader
The fragment shader implements a general-purpose programmable method for operating on
fragments before they are sent to the next stage.

Per-fragment operations
In Per-fragment operations several functions and tests are applied on each fragment: pixel
ownership test, scissor test, stencil and depth tests, blending and dithering. As a result of this
per-fragment stage either the fragment is discarded or the fragment color, depth or stencil value
is written to the frame buffer in screen coordinates.

See “ARM Guide to Unity” Version 2.1, available at
http://infocenter.arm.com/help/topic/com.arm.doc.100140 0201 00 _en/arm_guide_to_unity_enhancing_your_
mobile_games 100140 _0201_00_en.pdf, at pps. 6-75, 76.

The front-end outputs a geometry. For example, “[t]he Mali GPU generates primitives starting from the
vertices.” Moreover, the “vertex processor...[a]ssembles vertices of graphics primitives” and “[b]uilds
polygon lists.” Furthermore, “[t]he output of vertex processing includes...[t]he position of the vertex in the
output frambuffer” and “[a]dditional data, such as the color of the vertex after lighting calculations.”

13

Case 1:17-cv-00064-SLR RpeupesiiINg. fél@g{%?@@% {Page 15 of 33 PagelD #: 74

"a front-end in the graphics chip configured to receive one or more graphics instructions and to output a geometry;"

1.6.2 Primitive assembly
The Mal GPU generates primitives starting from the vertices.

A point contains one vertex, a line contains two vertices, a triangle contains three vertices. Vertices can
be shared between multiple pnmitives, depending on the draw mode. If geometry or tessellation shaders
are present, then vertices can generate a vanable number of primitives.

1.6.3 Vertex processing
The vertex data provided by the application 1s read one vertex at a time, and the shader core runs a vertex
shader program for each vertex.
Thus shader program performs:
= Lighting,
* Transforms.
* Viewport transformation.
= Perspective transformation.
The shader core or vertex processor also perform the following processing:
* Assembles vertices of graphics pnimitives.
* Bulds polygon lists.
The output from vertex processing includes:
= The position of the vertex in the output framebuffer.
* Additional data, such as the color of the vertex after lighting caleulations.

See http://malideveloper.arm.com/downloads/OpenGLES3.x/arm_mali_gpu_opengl_es_3-
x_developer_guide_en.pdf.

14

Case 1:17-cv-00064-SLR RpgupestiiNg. 7oles 59E23(difn Page 16 of 33 PagelD #: 75

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame
buffer;"

a back-end in the graphics chip configured
to receive said geometry and to process
said geometry into one or more final
pixels to be placed in a frame buffer;

The VIZIO Product includes a back-end in the graphics chip configured to receive said geometry and to
process said geometry into one or more final pixels to be placed in a frame buffer.

For example, the Mali GPU includes a back-end in the graphics chip configured to receive said geometry and

to process said geometry. For example, the Mali GPU includes four fragment processors (the “Fragment
Processors™), which receive processed primitives from the Geometry Processor.

Mali 400-MP Top Level Architecture

Asynch Mali-400 MP Top-Level
APB
- v v ! ! s
| |
Geometry Pixel Processor Pixel Processor ' I Pixel Processor ' Pixel Processor '
Processor #1 #2 i #3 | #4 |
1 i a
F 3 A
A\ 4 1L
CLKs
—» MaliMMUs ‘
RESET
il B r'y A A A A
IRQs
| \ 4 \ 4 Y A
IDLEs v 4
+— MalilL2 ‘
r
wAXI

= Scalable pixel performance
= 1-4 rasterizer cores
= 32K-128K L2 cache

>
_-_Jn “‘l Bringing Visual Entertainment to Life

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at

ARM

http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf, at

p.8.

15

Case 1:17-cv-00064-SLR RpeupesiiINg. fél@g{%?@@% {Page 17 of 33 PagelD #: 76

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame
buffer;"

6.1.9 Fragment Shaders
The fragment shader is the graphics pipeline stage after primitive rasterization.

For each sample of the pixels covered by a primitive, a fragment is generated. The fragment shader code
is executed for each generated fragment. There are many more fragments than vertices so you must take
care about the number of operations performed in the fragment shader.

In the fragment shader you can access the fragment coordinates in the windows space among other
values that contains all interpolated per-vertex output values from the vertex shader.

In the shader example in 6.7.2 Shader structure on page 6-72, the fragment shader receives the
interpolated texture coordinates from the vertex shader and performs a texture lookup to obtain the color
at these coordinates. It combines this color with the ambient color to produce the final output color. From
the declaration of the fragment shader float4 frag(vertexOutput input) : COLOR it is clear that it is
expected to produce the fragment color. The fragment shader is where you do the operations to achieve
the required effect. This ultimately consists of assigning the correct color to a fragment.

See “ARM Guide to Unity” Version 2.1, available at
http://infocenter.arm.com/help/topic/com.arm.doc.100140_0201_00_en/arm_guide_to_unity_enhancing_your_
mobile_games 100140 0201 00 _en.pdf, at p. 6-79.

16

Case 1:17-cv-00064-SLR RpeupesiiINg. f@@ﬂ%?@(&iﬁ {Page 18 of 33 PagelD #: 77

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame

buffer;"
Transform
Feedback
Vertex Primitive
- B -0 -
]
]

Fragment
Shader

Per-fragment

operations

Figure 6-2 OpenGL ES 3.0 Programmable Pipeline

Primitives
In the primitives stage the pipeline operates on the geometric primitives described by vertices,
points, lines and polygons.

Vertex Shader
The vertex shader implements a general-purpose programmable method for operating on
vertices. The vertex shader transforms and lights vertices.

17

Case 1:17-cv-00064-SLR RpgupestitNg. 7oles 59E23(difm Page 19 of 33 PagelD #: 78

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame
buffer;"

6 Advanced Graphics Technigues
6.1 Custom shaders

Primitive assembly
In primitive assembly the vertices are assembled into geometric primitives. The resulting
primitives are clipped to a clipping volume and sent to the rasterizer.

Rasterization
Output values from the vertex shader are calculated for every generated fragment. This process
is known as interpolation. During rasterization, the primitives are converted into a set of two-
dimensional fragments that are then sent to the fragment shader.

Transform feedback
Transform feedback, enables writing selective writing to an output buffer that the vertex shader
outputs and is later sent back to the vertex shader. This feature is not exposed by Unity but it is
used internally, for example, to optimize the skinning of characters.

Fragment shader
The fragment shader implements a general-purpose programmable method for operating on
fragments before they are sent to the next stage.

Per-fragment operations
In Per-fragment operations several functions and tests are applied on each fragment: pixel
ownership test, scissor test, stencil and depth tests, blending and dithering. As a result of this
per-fragment stage either the fragment is discarded or the fragment color, depth or stencil value
is written to the frame buffer in screen coordinates.

See “ARM Guide to Unity” Version 2.1, available at
http://infocenter.arm.com/help/topic/com.arm.doc.100140_0201 00 _en/arm_guide_to_unity_enhancing_your_
mobile_games 100140 0201 00 en.pdf, at pps. 6-75, 76.

The geometry is processed into one or more final pixels to be placed in a frame buffer. For example, the
Fragment Processor includes Color / Depth / Stencil Buffers, a Blending, Fragment Shader, Polygon List
Reader, Triangle Setup, Rasterization, and Tile Buffer circuitry. Moreover, the Mali GPU “[r]asterizes
[polygons] into an on chip 16X16 tile buffer” before writing the final pixels to an off-chip frame buffer.

18

Case 1:17-cv-00064-SLR Rpgupgsiiing. Faesi5hE23(difn Page 20 of 33 PagelD #: 79

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame

buffer;"
Mali-400 MP Pixel Processor
= Fragment Shader e b s,

= 128-thread barrel processor

= Fully general control flow Polygon List
Color / Depth / Reader
= VLIW ISA, tuned for graphics Stencil Buffers Triangle setup
= One texture sample per clock Fraament Shader
Raslenza(lun
Blendmg Thread control

= Key Features
= 16x16 on-chip tile buffer
= Renders one pixel per clock: 275M pix/sec @ 275 MHz

No penalty for 4x MSAA

No penalty for blending

4x or 16x MSAA resolve on output

OpenGL ES 2.0 states handled without state dependent shaders

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010 Hot3D_ARM.pdf, at

p.11.

Cuntml Reglsters I Performance Counters

19

Case 1:17-cv-00064-SLR RpgupestitNg. 7oles59E23(difm Page 21 of 33 PagelD #: 80

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame
buffer;"

Mali Tile-Based Rendering

/

= Reduces off-chip framebuffer bandwidth
= Rasterize into on-chip 16x16 tile buffer
= Z, stencil, MSAA samples never go off-chip il Rendering
= Tradeoff against increased geometry bandwidth

= Details: see Real-Time Rendering, 3" ed.

&
i
36
L
EE

9
] 61" Bringing Visual Entertainment to Life 9
See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf, at
p.9.

20

Case 1:17-cv-00064-SLR RpeupesiiINg. f@@g{%?@{&% {Page 22 of 33 PagelD #: 81

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame

buffer;"

The Mali Approach

The Mali GPU family takes a very different approach, commonly called tile-based rendering, designed to minimize the amount of
power hungry external memory accesses which are needed during rendering. As described in Elthe first blog in this series, Mali
uses a distinct two-pass rendering algorithm for each render target. It first executes all of the geometry processing, and then
executes all of the fragment processing. During the geometry processing stage, Mali GPUs break up the screen into small 16x16
pixel tiles and construct a list of which rendering primitives are present in each tile. When the GPU fragment shading step runs,

each shader core processes one 16x16 pixel tile at a time, rendering it to completion before starting the next one. For tile-based

architectures the algorithm equates to:

01. | foreach(tile)

2. | foreach(primitive in tile)

03. |' foreach(fragment in primitive in tile)
ed. | render fragment

6. |

As a 16x16 tile is only a small fraction of the total screen area it is possible to keep the entire working set (color, depth, and

stencil) for a whole tile in a fast RAM which is tightly coupled with the GPU shader core.
Tile-based Renderer Data Flow

Local

s Tile Memory

Vertex Shader Fragment Shader E
=

Compressed
Framebuffer

DDR Attributes Textures

See https://community.arm.com/groups/arm-mali-graphics/blog/2014/02/20/the-mali-gpu-an-abstract-machine-

part-2.

21

Case 1:17-cv-00064-SLR Rpgupgsiiig. Faesi5pE23(difn Page 23 of 33 PagelD #: 82

"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame
buffer;"

See https://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-
low-power-low-bandwidth-arm-mali-gpus.

22

Case 1:17-cv-00064-SLR Rpgupgsiiig. Faesi5pE23(difn Page 24 of 33 PagelD #: 83
"a back-end in the graphics chip configured to receive said geometry and to process said geometry into one or more final pixels to be placed in a frame

buffer;"
S0 cycles
2 s S0 jobs and tasks
T| |€-B&S€d Renderlng Mali arithmetic pipe Mali Fragment Tasks
Mali load/store pipe Tiles rendered
Primitives loaded Mali texture pipe Tile writes killed by TE
Primitives dropped

JS1 cycles Mali Fragment Quads)
JS! jobs and tasks Quads rasterized Mali Core Threads
Arithmetic pipe Quads doing early ZS

Frag threads doing late ZS

ARM Mali load/store pipe Quads killed early Z

Vertex I Polygon List . I Fragment BN Blend &
Shader | Builder 4 4 Resolve

L2 GPU Cache

Mali L2 Cache
External write/read
beats
External bus stalls

See ARM, How to Optimize Your Mobile Game with ARM Tools and Practical Examples, p.33,
http://malideveloper.arm.com/downloads/GDC15/How%20t0%200ptimize%20Y our%20Mobile%20Game%2
Owith%20ARM%20To0ls%20and%20Practical%20Examples.pdf.

23

Case 1:17-cv-00064-SLR RpsupesitiNg. o8 4hk23(difn Fage 25 of 33 PagelD #: 84

"wherein said back-end in the graphics chip comprises multiple parallel pipelines;"

wherein said back-end in the graphics chip
comprises multiple parallel pipelines;

The VIZIO Product includes a back-end in the graphics chip that comprises multiple parallel pipelines.

For example, each Fragment Processor “work[s] in parallel on separate tasks” and “processes one tile at a time
until completion[.]”

Going Multi-Core

= All cores work in parallel on
separate tasks

= Each core processes one tile at a
time until completion — no
communication between cores

A

|
|

\
\\

—
1-'!-.‘_____..--"""

= Tiles assigned statically to cores L " Yoo
in a swizzled order = | F | F|FF
. T 7 7T 1

] s |

= Tile processing order maximizes =| - |

e
E

L2 hit rate for polygon descriptors,
textures

o

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010 Hot3D_ARM.pdf, at
p.12.

24

Case 1:17-cv-00064-SLR Ropgupgstitig. 7d6sl50E23(difn Page 26 of 33 PagelD #: 85

"wherein said back-end in the graphics chip comprises multiple parallel pipelines;"

ARM® Mali™-400
Vertex
Processor
Fragment Fragment
Processor Processor

Fragment Fragment
Processor Processor

nit

See https://www.arm.com/products/multimedia/mali-gpu/ultra-low-power/mali-400.php.

Mali-400 MP is a multicore GPU: it contains a vertex processor and up to four fragment processors. The
vertex processor is a core and the fragment processors are also cores: they run independently on
separate tasks and contain their own critical resources. Within each Mali-400 fragment processor there is

one pipeline, however it has a very complex pipeline which has several sub-pipelines to handle different

tasks.

See https://community.arm.com/groups/arm-mali-graphics/blog/2011/03/28/multicore-or-multi-pipe-gpus-
easy-steps-to-becoming-multi-frag-gasmic.

25

Case 1:17-cv-00064-SLR RpgupestitNg. 7oles5dE23(dim Page 27 of 33 PagelD #: 86

"wherein said back-end in the graphics chip comprises multiple parallel pipelines;"

Mali 400-MP Top Level Architecture

Asynch Mali-400 MP Top-Level
APB
Geometry Pixel Processor Pixel ' Pixel Pixel
Processor # # | #3 #4
i
A A A F 3 A
) 4 Y A 4 4 Y
CLKs
— ->| MaliMMUs ‘
RESETs | , 7y 7y 7y 7y 7y
IRQs
-
A4 Y \ 4 Y
IDLEs Y, }
- -F{ MalilL2 ‘
A
WAL

= Scalable pixel performance
= 1-4 rasterizer cores
= 32K-128K L2 cache

2 L]
:Jn ﬁ" Bringing Visual Entertainment to Life 8 ARM

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf, at
p.8.

26

Case 1:17-cv-00064-SLR Rpgupgsiiig. Faesi5pE23(difn Page 28 of 33 PagelD #: 87

"wherein said back-end in the graphics chip comprises multiple parallel pipelines;"

The Mali Approach

The Mali GPU family takes a very different approach, commonly called tile-based rendering, designed to minimize the amount of
power hungry external memory accesses which are needed during rendering. As described in Elthe first blog in this series, Mali
uses a distinct two-pass rendering algorithm for each render target. It first executes all of the geometry processing, and then
executes all of the fragment processing. During the geometry processing stage, Mali GPUs break up the screen into small 16x16
pixel tiles and construct a list of which rendering primitives are present in each tile. When the GPU fragment shading step runs,
each shader core processes one 16x16 pixel tile at a time, rendering it to completion before starting the next one. For tile-based
architectures the algorithm equates to:

01. | foreach(tile)

02. | foreach(primitive in tile)

03. |' foreach(fragment in primitive in tile)
0a. | render fragment

6. |

As a 16x16 tile is only a small fraction of the total screen area it is possible to keep the entire working set (color, depth, and

stencil) for a whole tile in a fast RAM which is tightly coupled with the GPU shader core.
Tile-based Renderer Data Flow

Local
Tile Memory

(cl /B Vertex Shader : Fragment Shader =

DDR Attributes Textures :ompressed
ramebuffer

See https://community.arm.com/groups/arm-mali-graphics/blog/2014/02/20/the-mali-gpu-an-abstract-machine-
part-2.

27

Case 1:17-cv-00064-SLR Rpgupgsiiig. Faesi5pE23(difn Page 29 of 33 PagelD #: 88

"wherein said geometry is determined to locate in a portion of an output screen defined by a tile; and"

wherein said geometry is determined to
locate in a portion of an output screen
defined by a tile; and

The geometry is determined to locate in a portion of an output screen defined by a tile.

For example, the Mali GPUs implement tiled-based rendering.
The Mali Approach

The Mali GPU family takes a very different approach, commonly called tile-based rendering, designed to minimize the amount of
power hungry external memory accesses which are needed during rendering. As described in Elthe first blog in this series, Mali
uses a distinct two-pass rendering algorithm for each render target. It first executes all of the geometry processing, and then
executes all of the fragment processing. During the geometry processing stage, Mali GPUs break up the screen into small 16x16
pixel tiles and construct a list of which rendering primitives are present in each tile. When the GPU fragment shading step runs,
each shader core processes one 16x16 pixel tile at a time, rendering it to completion before starting the next one. For tile-based
architectures the algorithm equates to:

o1, | foreach(tile)

92. foreach(primitive in tile)

03. foreach(fragment in primitive in tile)
04, render fragment

85.

As a 16x16 tile is only a small fraction of the total screen area it is possible to keep the entire working set (color, depth, and

stencil) for a whole tile in a fast RAM which is tightly coupled with the GPU shader core.
Tile-based Renderer Data Flow

(/I Vertex Shader : Fragment Shader E

Compressed
DDR Attributes Framebuffer

See https://community.arm.com/groups/arm-mali-graphics/blog/2014/02/20/the-mali-gpu-an-abstract-machine-
part-2.

Furthermore, as depicted below, the geometry is determined to locate in a portion of an output screen defined
by atile.

28

Case 1:17-cv-00064-SLR RpgupestitNg. 7oles 59E23(difm Page 30 of 33 PagelD #: 89

"wherein said geometry is determined to locate in a portion of an output screen defined by a tile; and"

Going Multi-Core

= All cores work in parallel on
separate tasks

= Each core processes one tile at a
time until completion — no
communication between cores

A

/’ \l\
= Tiles assigned statically to cores SR
in a swizzled order

e

i

1
[1

i
4

f—sef aﬁ‘¢¢

tled 1l o

L
T

= Tile processing order maximizes
L2 hit rate for polygon descriptors,
textures

2

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010 Hot3D_ARM.pdf, at
p.12.

-
2

29

Case 1:17-cv-00064-SLR Rpgupgsiiig. Faesi5pE23(difn Page 31 of 33 PagelD #: 90
"wherein said geometry is determined to locate in a portion of an output screen defined by a tile; and"

JS0 cycles
: : S0 jobs and tasks
TI Ie-BaSEd Renderl ng Mali arithmetic pipe Mali Fragment Tasks
Mali load/store pipe Tiles rendered

Primitives loaded Mali texture pipe Tile writes killed by TE
Primitives dropped

JSI cycles Mali Fragment Quads i

JS| jobs and tasks Quads rasterized Mali Core Threads

Arithmetic pipe Quads doing early ZS

Frag threads doing late ZS

ARM Mali load/store pipe Quads killed early Z

Vertex N Polygon List . N Fragment N Blend &
Shader pmd Builder md Shader Resolve

L2 GPU Cache

Mali L2 Cache
External write/read
beats
External bus stalls

See ARM, How to Optimize Your Mobile Game with ARM Tools and Practical Examples, p.33,

http://malideveloper.arm.com/downloads/GDC15/How%20t0%200ptimize%20Y our%20Mobile%20Game%2
Owith%20ARM%20To0ls%20and%20Practical%20Examples.pdf.

30

Case 1:17-cv-00064-SLR RpsupestitNg. 7oles 59E23(difm Page 32 of 33 PagelD #: 91

"wherein each of said parallel pipelines further comprises a unified shader that is programmable to perform both color shading and texture shading."”

wherein each of said parallel pipelines
further comprises a unified shader that is
programmable to perform both color
shading and texture shading.

Each of said parallel pipelines further comprises a unified shader that is programmable to perform both color
shading and texture shading.

For example, each Fragment Processor includes a fragment shader.

Mali-400 MP Pixel Processor

= Fragment Shader
= 128-thread barrel processor

= Fully general control flow Polygon List
Color / Depth / Reader
= VLIW ISA, tuned for graphics Stencil Buffers Triangle setup
= One texture sample per clock Fragment Shader
Raslenzatlun
Blendmg Thread control

= Key Features
= 16x16 on-chip tile buffer
= Renders one pixel per clock: 275M pix/sec @ 275 MHz

No penalty for 4x MSAA

No penalty for blending

4x or 16x MSAA resolve on output

OpenGL ES 2.0 states handled without state dependent shaders

.
) L] Uiesppmm—"____._ARM_

See Mali-400 MP: A Scalable GPU for Mobile Devices, available at
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010 Hot3D_ARM.pdf, at
p.11.

Sys&am bus interface

Cuntml Reglsters I Performance Counters

Moreover, “the fragment shader receives interpolated texture coordinates from the vertex shader and performs
a texture lookup to obtain the color at these coordinates...[i]Jt combines this color with the ambient color to
produce the final output color.”

31

Case 1:17-cv-00064-SLR Rpsupestitig. 7oigs5hk23(difn Fage 33 of 33 PagelD #: 92

"wherein each of said parallel pipelines further comprises a unified shader that is programmable to perform both color shading and texture shading."”

6.1.9 Fragment Shaders
The fragment shader is the graphics pipeline stage after primitive rasterization.

For each sample of the pixels covered by a primitive, a fragment is generated. The fragment shader code
is executed for each generated fragment. There are many more fragments than vertices so you must take
care about the number of operations performed in the fragment shader.

In the fragment shader you can access the fragment coordinates in the windows space among other
values that contains all interpolated per-vertex output values from the vertex shader.

In the shader example in 6.7.2 Shader structure on page 6-72, the fragment shader receives the
interpolated texture coordinates from the vertex shader and performs a texture lookup to obtain the color
at these coordinates. It combines this color with the ambient color to produce the final output color. From
the declaration of the fragment shader float4 frag(vertexOutput input) : COLOR itis clear that it is
expected to produce the fragment color. The fragment shader is where you do the operations to achieve
the required effect. This ultimately consists of assigning the correct color to a fragment.

See “ARM Guide to Unity” Version 2.1, available at
http://infocenter.arm.com/help/topic/com.arm.doc.100140_0201 00 _en/arm_guide_to_unity_enhancing_your_
mobile_games 100140 0201 00 _en.pdf, at p. 6-79.

32

